Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1781, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453932

RESUMO

Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.


Assuntos
Cromatina , Histona Desmetilases , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Cromatina/genética , Neurônios/metabolismo
2.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33168583

RESUMO

The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Proliferação de Células/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Endocanabinoides/agonistas , Endocanabinoides/genética , Endocanabinoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , Transdução de Sinais/genética
3.
Neuropsychopharmacology ; 45(5): 877-886, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31982904

RESUMO

Prenatal exposure to Δ9-tetrahydrocannabinol (THC), the most prominent active constituent of cannabis, alters neurodevelopmental plasticity with a long-term functional impact on adult offspring. Specifically, THC affects the development of pyramidal neurons and GABAergic interneurons via cannabinoid CB1 receptors (CB1R). However, the particular contribution of these two neuronal lineages to the behavioral alterations and functional deficits induced by THC is still unclear. Here, by using conditional CB1R knockout mice, we investigated the neurodevelopmental consequences of prenatal THC exposure in adulthood, as well as their potential sex differences. Adult mice that had been exposed to THC during embryonic development showed altered hippocampal oscillations, brain hyperexcitability, and spatial memory impairment. Remarkably, we found a clear sexual dimorphism in these effects, with males being selectively affected. At the neuronal level, we found a striking interneuronopathy of CCK-containing interneurons in the hippocampus, which was restricted to male progeny. This THC-induced CCK-interneuron reduction was not evident in mice lacking CB1R selectively in GABAergic interneurons, thus pointing to a cell-autonomous THC action. In vivo electrophysiological recordings of hippocampal LFPs revealed alterations in hippocampal oscillations confined to the stratum pyramidale of CA1 in male offspring. In addition, sharp-wave ripples, a major high-frequency oscillation crucial for learning and memory consolidation, were also altered, pointing to aberrant circuitries caused by persistent reduction of CCK+ basket cells. Taken together, these findings provide a mechanistic explanation for the long-term interneuronopathy responsible for the sex-dimorphic cognitive impairment induced by prenatal THC.


Assuntos
Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Interneurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Caracteres Sexuais , Memória Espacial/efeitos dos fármacos , Animais , Feminino , Hipocampo/fisiologia , Interneurônios/patologia , Masculino , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Memória Espacial/fisiologia
4.
J Neurochem ; 153(1): 10-32, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630412

RESUMO

Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Encéfalo/ultraestrutura , Animais , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Regeneração Nervosa , Quiasma Óptico/crescimento & desenvolvimento , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Medula Espinal/ultraestrutura
5.
Transl Neurodegener ; 8: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899454

RESUMO

BACKGROUND: The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1 receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids. METHODS: We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro. RESULTS: Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis. CONCLUSIONS: The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.

6.
Front Pharmacol ; 9: 1508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687088

RESUMO

Alterations of the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are causally involved in a subset of malformations of cortical development (MCDs) ranging from focal cortical dysplasia (FCD) to hemimegalencephaly and megalencephaly. These MCDs represent a frequent cause of refractory pediatric epilepsy. The endocannabinoid system -especially cannabinoid CB1 receptor- exerts a neurodevelopmental regulatory role at least in part via activation of mTORC1 signaling. Therefore, we sought to characterize the possible contribution of endocannabinoid system signaling to FCD. Confocal microscopy characterization of the CB1 receptor expression and mTORC1 activation was conducted in FCD Type II resection samples. FCD samples were subjected to single nucleotide polymorphism screening for endocannabinoid system elements, as well as CB1 receptor gene sequencing. Cannabinoid CB1 receptor levels were increased in FCD with overactive mTORC1 signaling. CB1 receptors were enriched in phospho-S6-positive cells including balloon cells (BCs) that co-express aberrant markers of undifferentiated cells and dysplastic neurons. Pharmacological regulation of CB1 receptors and the mTORC1 pathway was performed in fresh FCD-derived organotypic cultures. HU-210-evoked activation of CB1 receptors was unable to further activate mTORC1 signaling, whereas CB1 receptor blockade with rimonabant attenuated mTORC1 overactivation. Alterations of the endocannabinoid system may thus contribute to FCD pathological features, and blockade of cannabinoid signaling might be a new therapeutic intervention in FCD.

7.
Cereb Cortex ; 27(11): 5303-5317, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334226

RESUMO

Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Células Piramidais/metabolismo , Receptor CB1 de Canabinoide/deficiência , Convulsões/metabolismo , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Eletroporação , Imunofluorescência , Técnicas de Silenciamento de Genes , Hibridização In Situ , Camundongos Transgênicos , Microscopia Confocal , Pentilenotetrazol , Células Piramidais/patologia , RNA Interferente Pequeno , Receptor CB1 de Canabinoide/genética , Convulsões/patologia , Técnicas de Cultura de Tecidos , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Sci Rep ; 6: 29789, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27430371

RESUMO

Cannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.2 that preserves the ability to activate PPARγ and analyzed its neuroprotective activity. This compound exerted a prosurvival action in progenitor cells during neuronal differentiation, which was prevented by a PPARγ antagonist, without affecting neural progenitor cell proliferation. In addition, VCE-003.2 attenuated quinolinic acid (QA)-induced cell death and caspase-3 activation and also reduced mutant huntingtin aggregates in striatal cells. The neuroprotective profile of VCE-003.2 was analyzed using in vivo models of striatal neurodegeneration induced by QA and 3-nitropropionic acid (3NP) administration. VCE-003.2 prevented medium spiny DARPP32(+) neuronal loss in these Huntington's-like disease mice models improving motor deficits, reactive astrogliosis and microglial activation. In the 3NP model VCE-003.2 inhibited the upregulation of proinflammatory markers and improved antioxidant defenses in the brain. These data lead us to consider VCE-003.2 to have high potential for the treatment of Huntington's disease (HD) and other neurodegenerative diseases with neuroinflammatory traits.


Assuntos
Canabinoides/farmacologia , Modelos Animais de Doenças , Doença de Huntington/prevenção & controle , Células-Tronco Neurais/efeitos dos fármacos , Quinonas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Doença de Huntington/patologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...